💖Scikit-learn - это широко используемая библиотека для машинного обучения на Python. Она построена поверх NumPy и SciPy и предлагает широкий спектр инструментов для создания и оценки моделей машинного обучения. Scikit-learn отлично подходит для построения традиционных моделей машинного обучения, таких как линейная регрессия, деревья решений и кластеризация k-средних.
Как использовать scikit-learn, чтобы построить простую модель линейной регрессии представлено на картинке
Ставится командой ⚙️pip install -U scikit-learn Документация и примеры кода здесь
💖Scikit-learn - это широко используемая библиотека для машинного обучения на Python. Она построена поверх NumPy и SciPy и предлагает широкий спектр инструментов для создания и оценки моделей машинного обучения. Scikit-learn отлично подходит для построения традиционных моделей машинного обучения, таких как линейная регрессия, деревья решений и кластеризация k-средних.
Как использовать scikit-learn, чтобы построить простую модель линейной регрессии представлено на картинке
Ставится командой ⚙️pip install -U scikit-learn Документация и примеры кода здесь
BY Python Turbo. Уютное сообщество Python разработчиков.
That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.
Python Turbo Уютное сообщество Python разработчиков from ru